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Abstract. A class of mean-field models for spin glasses, in which the magnitude of the 
Onsager term is controlled to interpolate between the TAP equations for the SK model 
and the ‘naive’ mean-field (NMF) equations, is introduced. We examine the number of 
metastable states and the related parameters of the models. For the NMF model the spin 
glass susceptibility is also evaluated numerically. The results indicate that the rugged free 
energy structure and the marginal stability of the spin glass phase are common properties 
of these mean-field models, and that the Onsager term plays a minor role on yielding these 
novel spin glass properties. 

1. Introduction 

The mean-field theory based on the Sherrington-Kirkpatrick (SK) [l] model has re- 
vealed novel properties of the spin glass phase [2]. Among them are the rugged free 
energy structure with an infinite number of metastable states and the marginal stabil- 
ity of the phase. These properties are expected to be common to various randomly 
frustrated systems. But there are few models other than the SK model for which we 
have succeeded to formulate these properties. 

In the TAP equations [3], which are the equations of state of the SK model 
written in terms of the mean site magnetisations (mi}, there exists the Onsager term, 
which properly subtracts the reaction field from the ordinary mean (Weiss) field. 
Unfortunately, this term makes it rather hard for us to solve the equations explicitly 
[4,5]. In fact it introduces, in configuration spacd, a large area in which the TAP 
equations themselves lose their validity. At the same time, however, this term has been 
thought to play a certain crucial role on the spin glass properties mentioned above, 
particularly on the marginal stability. 

The equations of state without the Onsager term have been used to examine some 
spin glass properties since they are found to be numerically much more robust than 
the TAP equations [6,7]. They are called the ‘naive’ mean-field (NMF) equations, and 
the properties of the equations themselves have been investigated in detail by Bray, 
Sompolinsky and Yu (BSY) [8]. They have introduced a spin model, for which the NMF 
equations hold true rigorously. This spin model, which we call the BSY model, is shown 
to have strikingly similar spin glass properties to those of the SK model. 

In the present work we investigate spin glass properties of the NMF model in further 
detail. For this purpose it is helpful and instructive to introduce a class of mean-field 
models which interpolates the SK and NMF models. They are defined, without specifying 
any explicit spin models lying behind them, by the following equations of state and the 
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corresponding free energy per site (divided by temperature with k,  = l),  f ,  written in 
terms of {mi}  with lmil I 1: 

Gi tanh-’ mi + yP2J2(1 - q)mi - P Jijmj g,(mi) - P 1 Jijmj = 0 (1.1) 
j j 

and 

I ,  

( U )  

where p = 1 / T ,  q = ( l /N)Cim? and N is the number of sites in the system. The 
infinite-ranged interactions { J i j )  are independent Gaussian random variables with the 
mean zero and the variance J2 /N.  The external parameter y in the above equations, 
which specifies a model, controls the magnitude of the Onsager term. With y = 1 and 
0 the equations reduce to the TAP and NMF equations, respectively. 

The total number of metastable states averaged over the realisations of { J i j } ,  (Ns)J, 
is examined following the method by Bray and Moore [9]. In the method ( N s ) J  is 
given in terms of the order parameter q and other parameters, which are in turn 
determined by a set of stationary equations. We find several solutions, which include 
the SK, Sommers [lo], and Bray and Moore [9] solutions. The largest ( N s ) J  obtained 
is found to be quite insensitive to y, i.e., its dependence on the reduced temperature 
is quite similar to that in the SK model [9]. We also investigate numerically the spin 
glass susceptibility of the NMF model in order to check the stability of its spin glass 
phase. It is also shown to be marginally stable, as is that of the SK model [4]. These 
results indicate that the novel spin glass properties mentioned above are common to 
the present class of mean-field models. 

In the next section we examine the total number of metastable states in the models. 
Some comments on mathematical details are presented in the Appendix. In $ 3  the 
stability of the NMF spin glass phase is analysed, and $ 4  is devoted to concluding 
remarks. 

2. Metastable states of the mean-field models 

By means of the method of Bray and Moore (BMI) [9], the number of metastable states 
for a fixed value of the free energy f ,  N,(f), in the mean-field model introduced in $1 
is given by 

- /? 2 J i j (x imj  + x j m i ) )  det A { J i j }  
(ij) / 

f v (mi)  = -In2 + In(1 - mf) + ;mi tanh-’ mi - ayP2J2(l - q2)  (2.2) 
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where A is the Hessian matrix of the free energy (F Nf) 

The integrals over A, U and x i  have been introduced to represent the restrictions 
q = (1  / N )  xi  m:, f = (1 / N )  E. f (mi) and Gi = 0, respectively. 

1 . y  As pointed out by BM1, since N,cf)  N exp(aN) is expected, we have strictly to 
average lnN,cf) over the realisations of {Ji,}. But BM1 have also argued on the TAP 
equations that the direct average ( N , c f ) ) J  is enough to evaluate the total number of 
metastable states, N ,  J df N,cf) ,  which is of present interest. Expecting this is also 
the case for models with y less than unity, we examine here only 

After some manipulation briefly described in the Appendix we end up with the 
following stationary-point problem ; (Ns )J  is given by 

Here t = T/T,(y), 1 = J/T,(y) and m = tanh(PJq'/*z), T,(y) being the transition 
temperature, which is given by equation (2.10a) below. The stationary equations for 
the parameters I ,  q, B,  a, A are given by 

2t2 

(2.8b) 

(2 .8~)  

(2.8d) 

where (. . .), represents the average over z with the weight given by the integrand of 
equation (2.7). We note that by the present formulation the linear, uniform suscepti- 
bility, xo, is given by 

Before going into the search of solutions of equations (2.8), it is worth mentioning 
here the stability of the paramagnetic point, Vmi = 0. Since the lowest eigenvalue of 
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the Hessian matrix A at this point is given by 1 - 2QJ + y Q 2 J 2 ,  it is unstable in the 
temperature range shown in figure 1. Its upper boundary is nothing but the spin glass 
transition temperature T,(y) given by 

(2.10~) 

We denote, on the other hand, the lower boundary by T,*(y), which is given by 

T,'(y)/J = (1 - fi) = l/l*. (2.10b) 

The apparent recovery of the paramagnetic stability at lower temperatures is due to the 
Onsager term in equation (1.2). It is known for y = 1, however, that the paramagnetic 
point is in the region where the validity condition of the TAP equations themselves is 
violated [3,11]. The expected free energy on the axis connecting this point and one of 
the spin glass solutions is shown schematically in inset (a) of figure 1 [5 ] ,  where the 
broken line represents a branch in the invalid region of the equations. On the other 
hand, the corresponding plot for the NMF equations is shown in inset (b). We may 
deduce that the critical line T,*(y) separates these two characteristic features. 

T/J 

0 0 2  0 4  0 6  0 8  1 0  

Figure 1. The y-dependence of the critical temperatures Tc (full curve) and T,' (broken 
curve). The paramagnetic point is unstable in the hatched region. In the insets we plot 
schematically the free energy along the line connecting the paramagnetic point and one of 
the metastable points (spin glass states) for T < T,' (a) and for T,' < T < Tc (b) ,  where 
the part represented by the broken curve is in the invalid region. 

1 

For the TAP equations (y = 1) BMl looked for solutions by setting 0 = 0 from the 
start, and found three spin glass solutions (q > 0) below T,: the SK solution for which 
only q is non-zero, the Sommers solution [lo] with B = -A < 0, and the one with 
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B = 0 but with non-vanishing A and A. Only the last solution, which we call the BMI 
solution, has non-zero (6. Its temperature dependence is shown by the broken line in 
figure 2. In the present investigation we find three other solutions. One is with r~ = 0 
and it has a little larger (6 than the BMI. We call it the B M ~ ~  solution. The second one, 
which we call the modified SK (MSK) solution, is with > 0 and has much smaller but 
non-vanishing (6. The last one is with 0 < 0 and non-vanishing 4. We name it the 
general (GE) solution. 

Figure 2. Temperature dependence of 4 = (l /N) ln(Ns)J, Ns being the number of metastable 
states. The full and broken curves represent 4 of the GE solution for the NMF equations 
and that of the BMI solution for the TAP equations, respectively. 

For models with y less than unity we find the solutions that are smoothly connected 
to each of the above six solutions in the limit y -+ 1. An example of such a trace at 
a fixed reduced temperature t 3 T/Tc(y)  = 0.5 is shown in figure 3, where the various 
parameters are plotted against 1 which is related to y through equation (2.10a). 

The inspection of such traces reveals the following aspects of the six solutions. 

( 1 )  S K  solution (1 = r~ = (6 = 0). As 1 decreases from unity, B = -A > 0 starts to 
grow, while q decreases (figure 3(a) ) .  An interesting observation here is that this solution 
disappears at a critical value of 1 with vanishing q .  We can ascertain analytically from 
equations (2.8) that this critical point just coincides with I* of equation (2.10b). This 
means that the SK solution exists only when the paramagnetic point is apparently 
stable (inset ( a )  in figure 1). Its growth is triggered by the instability of that point at 
Tc*. Note that for the SK model T,* coincides with T,. 

(2)  M S K  solution. As seen in figure 3(a) ,  this solution is quite close to the SK solution, 
though it associates with non-vanishing I ,  0 and (6. It also vanishes at I * ,  where it 
merges to the SK solution (q, A, 0 and (6 also vanish, while B and A remain finite). 

( 3 )  Sommers solution (A = CT = (6 = 0, B = -A < 0). For the N M F  equations this 
solution coincides exactly with the replica symmetric solution of the BSY model [8], 
and B is related to the susceptibility 2 E p-'xo of BSY by B = -2fi2J22. As Sommers 
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Figure 3. (a )  The /-dependence of the parameters l,q,lA,IB, D and 4 at t = T/T,(/) for the 
MSK (full), the SK (broken) and the Sommers solutions (chain). The unit of abscissa is for 
q, IA and IB, while l ,  D and I$ are arbitrarily scaled. ( b )  As (a) but for the GE (full), the 
BMI (broken) and the BMII solutions (chain). The enlarged plots of the region 0.9 21 I 1 
are presented in the right-hand figure. 
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[lo] and BSY pointed out for the 1 = 1 and 1 = 0.5 cases, respectively, this solution 
has another critical point at T = T,*(l). In terms of the present formulation, 1B in 
the region T > T,*(l) satisfies llBl < 1, the condition that the integrals by steepest 
descents to derive equation (2.5) are convergent. This condition is violated in the 
low-temperature region. Therefore we plot in figure 3a the Sommers solution only in 
the high-temperature region, and present the 1-dependence of T,*/T, in figure 4. 

0 5  0 6  0 1  0 8  0 9  1 0  
1 

Figure 4. The critical lines t: = T,'/T, (full), r: = T,'/T, (broken) and t: = T,'/T, (chain) 
in the I-t plane. 

(4) BM,  and BM,, solutions (a = 0). These two solutions are a pair of roots of 
equations ( 2 . 8 ~ )  and (2.8d) in the parameter space of B and A. As seen in figure 3(b) ,  
they merge together at I = 1; and disappear in the range 1 < l;. The corresponding 
critical line t:(l), the inverse of l:(t), is also shown in figure 4. 

( 5 )  G E  solution. This solution is a most general one in the sense that all five 
parameters as well as the 4 associated with it are non-vanishing. As we see in 
figure 3(b) ,  a crosses zero at  1 = li, where it touches with the BMI and BMII solutions 
(see the enlarged figure). 

The largest value of 4 is taken by the GE solution for 1 c 1: and by the BM,, 
solution for 1 > 1;. At any reduced temperature 4 of the NMF model is largest and is 
plotted by the solid curve in figure 2. The absolute magnitudes of the differences in 4 
at a fixed t are rather small within the scale of figure 2, so that the overall t-dependence 
of 4 looks similar to all the mean-field models of present interest. However, its relative 
differences are already significant at t = 0.5 as seen in figure 3(b) ,  and they grow further 
as t approaches unity, as will be discussed just below. 

For further comparison of the SK and NMF models we present some asymptotic 
expressions for the GE solution of the NMF model. Near T, it is solved as 

= E + 2e2 - 14c3 + y c 4  + . , . (2.11a) 

(2.11b) 

(2.1 I C )  

A = 1 + E  - f c 2  + 13e3 + ...  
B = - 1 - e + g c  5 2 + - p  137 3 +... 
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(2.114 4 2 176 3 o = j E  + T E  +... 
(2.11e) 

where E = 1 - t. It is noted that the equality B = -A breaks down from the order of 
c2, while q and B + A - c start to deviate from the corresponding quantities of the 
Sommers solution from the order of e4 and e5, respectively. Using the above solutions 
we obtain 

A=-?€ 8 3  +... 

(2.12) 

The leading order contribution to 4 N M F  is proportional to e6, the same as the BMl 
result for the TAP equations. But the coefficient of the latter is about 50 times smaller 
than the above result. 

Near T = 0, q N 1 - at2, and so the Onsager term vanishes at T = 0, both in the 
GE solution of the NMF equations and in the BMl solution of the TAP equations. For 
the NMF equations we obtain A %' 0.5060/t, while B,a  and I do not diverge. For the 
TAP equations, on the other hand, A E 1 E 0.5060/t. Both solutions yield the same 
result 4 ( T  = 0) %' 0.1993, as expected [12]. 

We conclude that the Onsager term does not play any crucial role in the actual 
existence of many metastable states in the spin glass phase, but only in determining 
their number. It has to be noted again here that, as pointed out in the Appendix, this 
conclusion is based on the analysis of the replica symmetric solution of (Ns)J. 

3. Marginal stability of the NMF spin glass phase 

From the schematic plots of the free energy shown in insets (a) and (b) of figure 1 
the marginal stability of the spin glass phase is apparent for the SK model but not for 
the NMF model. Therefore we examine numerically the spin glass susceptibility zSG to 
check the stability of the latter by means of the method of Bray and Moore (BMZ) [4]. 
It is given by 

where A is the Hessian matrix defined by equation (2.3) and p(1) is its spectrum of 
eigenvalues. We have solved the NMF equations (equation (1.1) with y = 0) numerically. 
A set of equations (ami/&) = -{mi - tanh(p cj J i j m j ) } / z  is solved to find a stationary 
solution starting from that at the preceding temperature, where z is the relaxation time 
properly chosen [7]. Only the cooling process has been examined in the present work. 
The solution thus obtained is expected to be one of metastable states with lowest free 
energies. We have carried out one cooling process for each realisation of ( J , } .  The 
numbers of samples examined are 500, 162, 65 and 42 for N = 50, 100, 200 and 400, 
respectively. 

the lowest eigenvalue of the Hessian 
matrix, and For a fixed N both quantities tend to increase as temperature 
decreases. But they vanish in the thermodynamic limit at  each temperature. Their 
power law behaviours in N ,  i.e., (Imin)J = N-2/3 and ( x & ) ~  N N-'/3, are identical to 
the corresponding BM2 results for the TAP equations. They indicate p ( I )  cc for 
A N 0. 

We show in figure 5 the results of 
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Figure 5. Sample-size dependence of (A,~,,)J (a) and ( x $ ) J  ( b ) .  The results at t = 0.5, 0.7 
and 0.9 are presented from the top to the bottom. The broken lines are simply guides for 
the eye. 

The above results confirm that the spin glass phase of the NMF model is also 
marginally stable, and that the Onsager term is not indispensable for yielding the 
marginal stability. Combined with the expected free energy plot in inset (b)  of figure 1 ,  
it is suggested that the direction of the marginal stability is almost perpendicular to 
the direction towards the paramagnetic point. 

In order to get further insights into the spin glass phase of the NMF model, we 
examine the projection of the states to the maximum eigenmode, { ( A l i ) } ,  of the J i j  
matrix. In figure 6 the data of q- ' [ (1 /N)Ci (A l i )miI2  are presented. We can read 
from the figure that in the limit N + 00 the macroscopic condensation to the A-mode 
occurs just at T,, but the mode-mixing takes place immediately below T,. Although 
our present data of q - ' [ ( l / N )  Ci(Ali)miI2 remain finite at lower temperatures, which 
may be partly due to our method of simulation, i.e., gradual cooling, and partly due to 
small sizes of our samples investigated, they may support Sompolinsky's picture [ 1 3 ]  
that the dominant condensation to the A-mode breaks down immediately below T,. 
It is of interest to examine whether this type of mode-mixing is related to the idea of 
marginal stability being due to the continuous bifurcation of spin glass states [14,15] .  

4. Conclusions 

We have shown by explicit evaluation of the number of metastable states and the spin 
glass susceptibility that the NMF model shares the novel spin glass properties such as 
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Figure 6. The plots of q-'[(l/N) ~ i ( A l i ) m i J 2 ,  where {(Ali)} denotes the maximum eigen- 
mode of the Ji, matrix. 

the rugged free energy structure and the marginal stability first found by the mean-field 
theory based on the SK model. It is expected that they are common to the class of 
mean-field models introduced by the present work. Since these models coincide at 
T = 0 (because q 1: 1 - at2), it is also plausible that the metastable states exhibit the 
ultrametric organisation as those of the SK model [16] .  We believe that these spin glass 
properties are intrinsic ones common to various randomly frustrated systems and that 
they are not necessarily associated with the replica-symmetry-breaking concept. 
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Appendix 

We make here brief comments on the derivation of equations (2.5)-(2.7) from equation 
(2.1). By a simple translation of each integral variable Jij  in the expression of ( N s c f ) ) J  
the average over ( J i j }  can be confined into (det & ) J ,  where A, = Aij + ( 1 / N ) j 2 J 2 ( x i m j  + 
xjmi) .  BM1 neglected this additional term as well as the last term in equation (2.3) 
simply because they are of order N - l .  This argument does not hold true strictly as 
already pointed out by Plefka [ l l ] .  Actually, keeping these terms, and introducing the 
replica method of BM1, we obtain 
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x exp N { - Aq - uf - V 2  - 2PQ - 2yQ2 + 2R2 - is2} L 

where 2, = ai - 2PJR + P J S ,  and S corresponds to the parameter Tab in BM1, i.e., we 
put Tap = S for all the pairs of U/?. Also to introduce R,  V , P  and Q similar replica 
symmetry has been assumed. The parameters P and Q above come out by applying 
the Hubburd-Stratonovich identity to the terms neglected by BM1. As we see from this 
equation, there seems no simple reasoning that these contributions vanish a priori. 

Equation (A.l) represents, after the integrations over xt, a stationary-point problem 
in the space of the eight parameters, as indicated. Since the search for solutions in 
the whole parameter space is a formidable task, we reduce it by putting P = Q = 0, 
which certainly solves the stationary equations. The stability analysis of solutions is 
even harder since it requires full information on the Hessian matrix in the infinite- 
dimensional replica space, i.e., we have to perform an analysis similar to that of de 
Almeida and Thouless [17] in such a space. In the present work we do not go into 
such a stability analysis, but only look for stationary solutions with P = Q = 0. 

Furthermore, in order to obtain the total number of metastable states ( N s ) J  we put 
U = 0. Analogously to BM1, we then change the parameters so that yP2J2(1-q)-2BJR = 
lB, yP2J2(1 - q)  + PJV = -lA, and P J S  = lo, and obtain equations (2.5)-(2.7) in the 
text. 
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